相關文章 / article
MOOG 穆格 G761-3034B 伺服閥 G761-3033B
產品簡介
2)在加工工藝的改進方面,采用新型的加工設備和工藝來提高伺服閥的加工精度及能力。如在閥芯閥套配磨方法上,上海交通大學、哈爾濱工業大學均研制出了智能化、全自動的配磨系統。特別是哈爾濱工業大學的配磨系統改變了傳統的氣動配磨的模式,采用液壓油作為測量介質,更直接地反應了所測滑閥副的實際情況,提高了測量結果的準確性與精度。在力矩馬達的焊接方面中船重工第704研究所與德國廠家合作,采用了的焊接工藝取得了良好的效果。另外,哈爾濱工業大學還研制出智能化的伺服閥力矩馬達彈性元件測量裝置。解決了原有手動測量法中存在的測量精度低、操作復雜、效率低等問題。對彈性元件能高效完成剛度測量、得到完整的測量曲線,且不重復性測量誤差不大于1%。
G761-3004B
MOOG 穆格 G761-3034B 伺服閥 G761-3033B
MOOG 穆格 伺服閥 D765-1089-4
MOOG 穆格 伺服閥D765-1089-4/S63JOGAEVSX0
穆格MOOG伺服閥 D661-4697C/G15JOAA5VSX2HA
MOOG伺服閥 D661-4636/G60KOAA5VSX2HA
穆格MOOG伺服閥 D661-4651/G35JOAA6VSX2HA
MOOG穆格 伺服閥 G761-3033B
MOOG穆格 伺服閥 G761-3034B
MOOG穆格 伺服閥 G761-3004
MOOG穆格 伺服閥 G761-3003B
MOOG穆格 伺服閥 J761-004
穆格MOOG伺服閥 D661-6393C
穆格MOOG伺服閥 D661-4770
穆格MOOG伺服閥 D662-4194
穆格MOOG伺服閥 D061-9420
MOOG 穆格伺服閥 G761-3023B
MOOG 穆格伺服閥 G761-3002B
穆格MOOG伺服閥 D662-4141
穆格MOOG伺服閥D062-9320
穆格MOOG G631-3004B伺服閥 H40JOFM4VBQ(±15mA)
穆格MOOG伺服閥 G631-3004B H40JOFM4VBR
MOOG穆格 伺服閥 G761-3005B
MOOG穆格 伺服閥 G761-30098
G761-3004B/38L
G761-3003B/19L
G761-3002B/10L
D661-4444C/G60JOAA6VSX2HA 伺服閥 MOOG穆格
D661-4636/G60KOAA5VSX2HA伺服閥 MOOG穆格
D661-4651/G35JOAA6VSX2HA伺服閥 MOOG穆格
D661-4697C/G15JOAA5VSX2HA伺服閥 MOOG穆格
D661-4652/G15JOAA6VSX2HA伺服閥 MOOG穆格
D661-4469C/G75JOAA6VSX2HA伺服閥 MOOG穆格
4)在測試方法改進方面,隨著計算機技術的高速發展生產單位均采用計算機技術對伺服閥的靜、動態性能進行測試與計算。某些單位還對如何提高測量精度,降低測量儀器本身的振動、熱噪聲和外界的高頻干擾對測量結果的影響,作了深入的研究。如采用測頻/測周法、尋優信號測試法、小波消噪法、正弦輸入法及數字濾波等新技術對伺服閥測試設備及方法進行了研制和改進 [3]。
典型的MOOG伺服閥由永磁力矩馬達、噴嘴、檔板、閥芯、閥套和控制腔組成。當輸入線圈通入電流 伺服閥時,檔板向右移動,使右邊噴嘴的節流作用加強,流量減少,右側背壓上升;同時使左邊噴嘴節流作用減小,流量增加,左側背壓下降。閥芯兩端的作用力失去平衡, 閥芯遂向左移動。高壓油從S流向C2,送到負載。負載回油通過 C1流過回油口,進入油箱。閥芯的位移量與力矩馬達的輸入電流成正比,作用在閥芯上的液壓力與彈簧力相平衡,因此在平衡狀態下力矩馬達的差動電流與閥芯的位移成正比。如果輸入的電流反向,則流量也反向。表中是伺服閥的分類。
輸出量與輸入量成一定函數關系并能快速響應的液壓控制閥﹐是液壓伺服系統的重要元件。液壓伺服閥按結構分為滑閥式﹑噴嘴擋板式﹑射流管式﹑射流板式和平板式等﹔按輸入信號可分為機液伺服閥﹑電液伺服閥和氣液伺服閥。機液伺服閥是將小功率的機械動作轉變為液壓輸出量(流量或壓力)的機液轉換元件。機液伺服閥大都是滑閥式結構﹐在船舶的舵機﹑機床的仿形裝置﹑飛機的助力器上應用最早。電液伺服閥是將電量轉變成液壓輸出量的電液轉換元件﹐出現於1940年。到50年代﹐這種元件的結構趨於成熟。隨著電子技術和計算機技術的發展﹐電液伺服系統的性能得到顯著改善﹐大大優於其他的液壓伺服系統﹐因而得到廣泛應用。電液伺服閥的內部結構可分滑閥位置反饋﹑載荷壓力反饋和載荷流量反饋﹔閥的級數可分單級﹑雙級和多級。在電液伺服閥中﹐將電信號轉變為旋轉或直線運動的部件稱為力矩馬達或力馬達。力矩馬達浸泡在油液中的稱為濕式﹐不浸泡在油液中的稱為乾式。其中以滑閥位置反饋﹑兩級乾式電液伺服閥應。圖 電液伺服閥的工作原理圖 為電液伺服閥的工作原理。力矩馬達在線圈中通入電流后產生扭矩﹐使彈簧管上的擋板在兩噴嘴間移動﹐移動的距離和方向隨電流的大小和方向而變化。例如擋板向右移近噴嘴時﹐就在主閥芯兩端面上產生壓力差推動主閥芯左移﹐使壓力油口P S與載荷1口相通﹐回油口與載荷 2口相通。主閥芯左移的同時通過反饋桿對力矩馬達產生的力矩和擋板的位移進行負反饋。因此﹐主閥芯的位移量就能精確地隨著電流的大小和方向而變化﹐從而控制通向液壓執行元件的流量和壓力。氣液伺服閥是將氣動量轉變為液壓輸出量的氣液轉換元件